

In silico and antibacterial studies of Thiadiazole and Triazole linked 1,8-Naphthyridine derivatives

Bhargavi Lakshmi J.¹, Bhaskar Pittala², Laxminarayana Eppakayala^{2*}, Paramesh Donta² and Chittireddy Venkata Ramana Reddy^{3,4}

1. Geethanjali College of Engineering and Technology, Keesara, Rangareddy-501301, INDIA
2. Sreenidhi Institute of Science and Technology (Autonomous) Yammampet, Ghatkesar, Hyderabad-501301, INDIA
3. Jawaharlal Nehru Technological University, Hyderabad, Kukatpally, Hyderabad-500 085, INDIA
4. Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad, 501301, INDIA

*elxnkits@yahoo.co.in

Abstract

A series of thiadiazole and triazole linked 1,8-naphthyridine derivatives were screened for antibacterial activity and docking studies were performed. Compared to the tetracycline, all these compounds have shown good to moderate antibacterial activity against *Staphylococcus aureus*, *Bacillus cereus*, *Micrococcus luteus*, *Klebsiella pneumonia*, *Salmonella paratyphi A* and *Escherichia coli*.

Keywords: Synthesis, Naphthyridine, Thiazolidine, Triazole, Antibacterial activity, Docking studies.

Introduction

Heterocyclic derivatives accounted for the majority of organic chemistry research and development during the last few decades. Given their significance for biology and industry, attempts have been made to improve these heterocycles quality of life in comparison to other substances. Approximately half of the 20 million chemical compounds that were found by the end of the second millennium, are heterocyclic and more than two thirds are completely or partly aromatic. The development of novel, effective medications that successfully enter the market and complete clinical trials is crucial. It is important to realize right away that the term 'drug discovery' in pharmaceutical research and development is not always clear. It can be defined for example, with a number of alternatives for each category, utilizing programmatic, organizational, or even both ways.

As a result, it is crucial to define the variability precisely and to grasp it first. Naphthyridine derivatives are heterocyclic analogues of naphthalenes that contain nitrogen. The group of diazanaphthalenes that make up the pyrido pyridines, also known as benzodiazines or naphthyridines, has one nitrogen atom in each ring in the bridge head position. 1,8-naphthyridines moiety assumed enormous significance as a pharmacophore with its presence in various active pharmaceutical ingredients. Several naphthyridine derivatives find applications as promising drugs in different therapeutic categories as analgesics^{3,18}, anti-biotics¹⁴, anti-cytotoxic⁷, anti-malarial¹⁶, anti-bacterial^{9,11} and anti-tumor^{8,22} etc. 1, 2, 4-triazole is a five-membered heterocyclic molecule comprising of two carbons and three nitrogens.

There are two tautomeric variants of it: 1H and 4H-1, 2, 4-

triazole is regarded as a nucleus with significant pharmacological importance. Literature study reveals that 1, 2, 4-triazoles have a broad range of biological actions. Particularly, they are well known for their anti-tumor¹⁰, anti-cancer²¹, anti-fungal¹², anti-diabetic²⁰, cytotoxic⁶ and anti-microbial activites¹⁷. One of the most significant and well-known heterocyclic nuclei, the 1,3,4-thiadiazole nucleus is a common and essential component of many natural products and pharmaceuticals. Thiadiazole nucleus is present as a core structural component in an array of drug categories such as anti-cancer^{5,19}, anti fungal²³, antimicrobial², anti-inflammatory¹, analgesic¹, antiviral agents⁴.

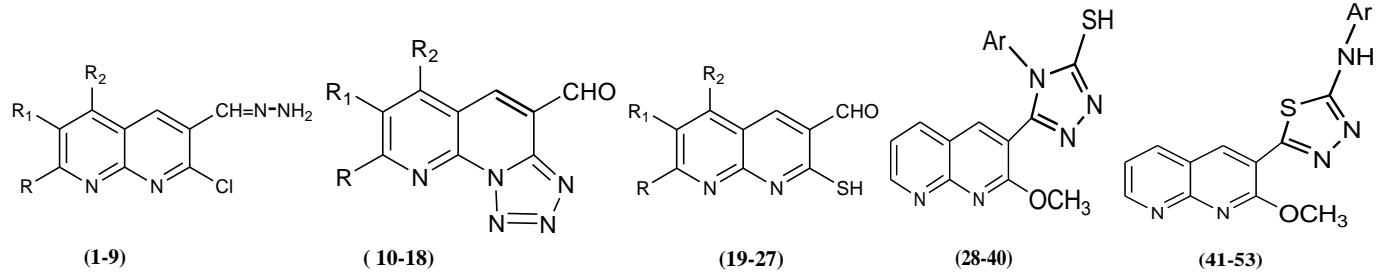
The broad and potent activities of thiadiazole and their derivatives have established them as pharmacologically significant scaffolds. In this study, an attempt has been made with recent research findings on this nucleus, to review the structural modifications on different thiadiazole derivatives for various pharmacological activities.

According to antibacterial screening, all of the newly synthesized 1,8 naphthyridine derivatives of thiadiazole and triazole showed strong antibacterial activity against *Staphylococcus aureus*, *Bacillus cereus*, *Micrococcus luteus*, *Klebsiella pneumonia*, *Salmonella paratyphi A* and *Escherichia coli*. New naphthyridines, thiadiazole and triazole derivatives have recently been synthesized quickly and efficiently. Its antibacterial activity against Gram *E.coli* was superior to that of any other compound when measured against the antibiotic *streptomycin*. Derivatives of thiadiazol and triazole are important to industry because of their diverse biological activities. Researchers are always drawn to thiadiazol and triazole derivatives due to their effectiveness in a variety of pharmacological applications.

Material and Methods

1,8-naphthyridines derivatives have been extensively studied as biologically active compounds possessing a wide spectrum of activities. It was therefore considered worthwhile to evaluate the present 1,8-naphthyridine derivatives synthesized for their possible antibacterial activities.

The present study has aimed at antimicrobial activity of newly synthesized 1,8-naphthyridine containing carbaldehydes, methylene hydrazines, thiadiazol amines and triazole thiols. The antibacterial effect of compounds was


evaluated using well-diffusion method. Their possible antibacterial activities are given in table 1 and table 2.

Molecular Docking: Synthesized compound molecular docking was conducted for DNA gyrase B (ID: 4URO) using structures obtained from the protein data bank. Ligands and protein structures were prepared independently. Auto Dock v4.0 software was employed for molecular docking to the binding site, with a grid box generated around the co-crystallized ligand¹⁵. The best-scoring pose and complex were constructed and visualized in Discovery Studio software. 2D and 3D images were generated in Discovery Studio.

Results and Discussion

The focus of the current study is on the investigation and creation of highly effective heterocyclic compounds with potential applications in medicine. Our research involves the synthesis of naphthyridine derivatives using various substituents. According to findings, compounds 15, 17, 25, 26, 49 and 50 exhibit superior antibacterial action against the nearly equal to the standard drug.

However, a few molecules that share the same functional group also exhibited strong action. Gram negative strains have greater susceptibility to drugs that have been evaluated. The inhibitory zone was displayed in mm.

Fig. 1: Structure of compounds with various substituents

Table 1
Effect of the synthesized compounds with various substituents (1-27) on six types of bacteria.

Compound No.	R/ R ₁ /R ₂	<i>S. aureus</i>	<i>B. cereus</i>	<i>M. luteus</i>	<i>K. pneumoniae</i>	<i>S. paratyphi A</i>	<i>E. coli</i>
1	H/H/H	4	3	7	2	1	2
2	NH ₂ /H/H	6	2	8	3	1	3
3	Cl/H/H	8	3	8	7	2	3
4	CH ₃ /H/H	6	4	1	1	1	2
5	H/CH ₃ /H	9	9	8	4	2	2
6	H/Cl/H	9	2	6	2	1	2
7	H/Br/H	11	9	6	4	2	3
8	H/H/CH ₃	10	11	14	9	2	3
9	Br/H/H	6	4	5	6	1	2
10	H/H/H	8	7	7	6	1	1
11	NH ₂ /H/H	12	11	13	7	2	3
12	Cl/H/H	6	4	1	1	1	2
13	CH ₃ /H/H	17	7	5	1	6	13
14	H/CH ₃ /H	1	8	3	2	1	1
15	H/Cl/H	17	1	10	11	1	9
16	H/Br/H	2	4	8	6	8	6
17	H/H/CH ₃	9	10	10	7	11	12
18	Br/H/H	9	8	5	8	8	10
19	H/H/H	5	6	4	1	1	2
20	NH ₂ /H/H	2	5	1	2	1	1
21	Cl/H/H	1	8	2	1	1	3
22	CH ₃ /H/H	2	10	2	1	2	3
23	H/CH ₃ /H	1	12	1	1	2	3
24	H/Cl/H	4	2	1	2	6	4
25	H/Br/H	1	11	12	11	12	5
26	H/H/CH ₃	2	10	13	11	10	2
27	Br/H/H	5	6	2	4	5	12
Tetracycline		25	20	17	18	16	15

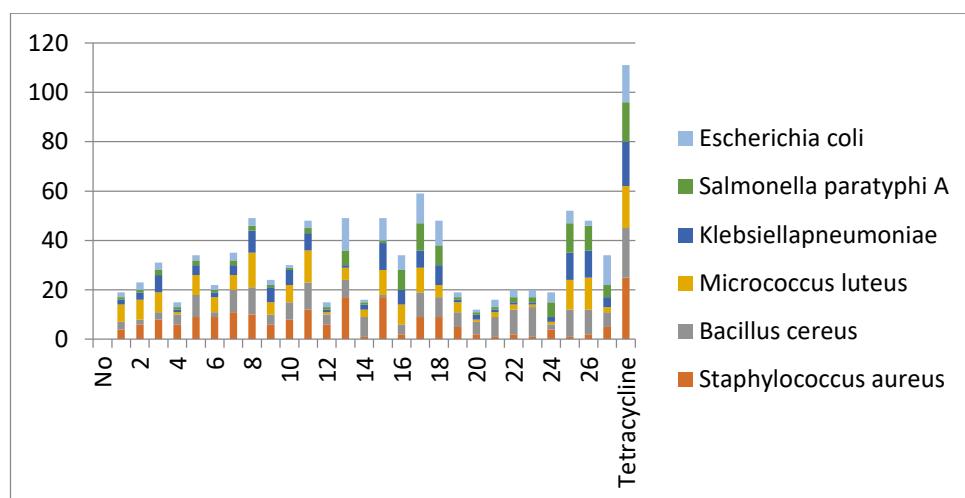


Figure 2: The graph showing the effect of the synthesized compounds with various substituents (1-27) on six types of bacteria

Table 2
Effect of the synthesized compounds with various substituents (28-53) on six types of bacteria

Compound No.	Ar	Bacillus magatetium	Staphylococcus aureus	Escherichia coli	Proteus vulgaris	Bacillus subtilis	Enterobacter aerogeus
28	-H	1	5	2	10	5	3
29	4-Cl	1	2	6	12	6	5
30	2-Cl	2	6	4	11	9	7
31	4-F	3	4	9	15	5	8
32	4-OMe	1	3	5	-	4	5
33	2-OMe	4	1	8	12	1	2
34	3-OMe	2	5	2	13	1	3
35	4-NO ₂	6	2	4	11	2	3
36	3-NO ₂	6	9	6	10	1	2
37	2-NO ₂	5	4	8	16	2	2
38	2-OMe 4-NO ₂	4	3	2	14	1	2
39	3-Me	1	9	4	11	2	3
40	2-Me	-	1	6	12	2	3
41	-H	-	4	6	13	1	2
42	4-Cl	2	6	6	15	1	1
43	2-Cl	1	5	3	11	2	3
44	4-F	3	4	1	12	1	2
45	4-OMe	1	5	5	10	6	13
46	2-OMe	1	6	8	9	1	1
47	3-OMe	1	1	2	8	1	9
48	4-NO ₂	2	4	8	9	8	6
49	3-NO ₂	-	1	2	11	11	12
50	2-NO ₂	1	8	4	10	8	10
51	2-OMe 4-NO ₂	2	6	4	5	1	2
52	3-Me	-	5	5	8	2	6
53	2-Me	-	2	2	7	3	5
Tetracycline		16	25	15	17	19	20

Molecular Docking: The study used DNA gyrase B (PDB ID: 4URO) to explore small molecule compounds as antimicrobial agents¹³. Docking scores from Auto dock were analyzed against the crystal structure (PDB: 4URO). Bacterial DNA gyrase, vital for antibacterial investigations, breaks double-stranded DNA, crucial for replication. The analysis included novobiocin's impact on the ATPase

binding site, affecting key residues in the cell wall (Ser55, Ala64, Asn65, Asp89, Thr164, Thr173 and Val79). The inhibitory effects stem from structural differences in cell walls between Gram-negative (thin peptidoglycan with an outer membrane) and Gram-positive bacteria (thick peptidoglycan without an outer membrane).

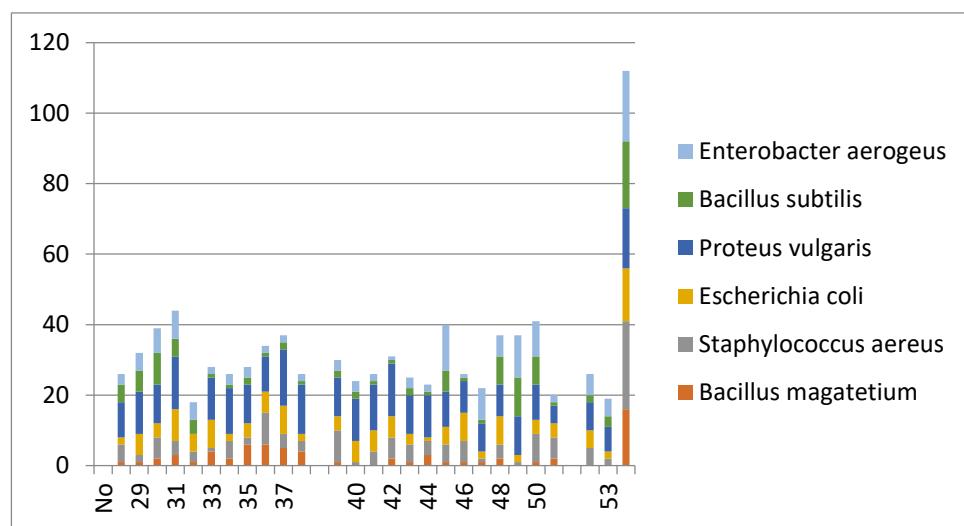
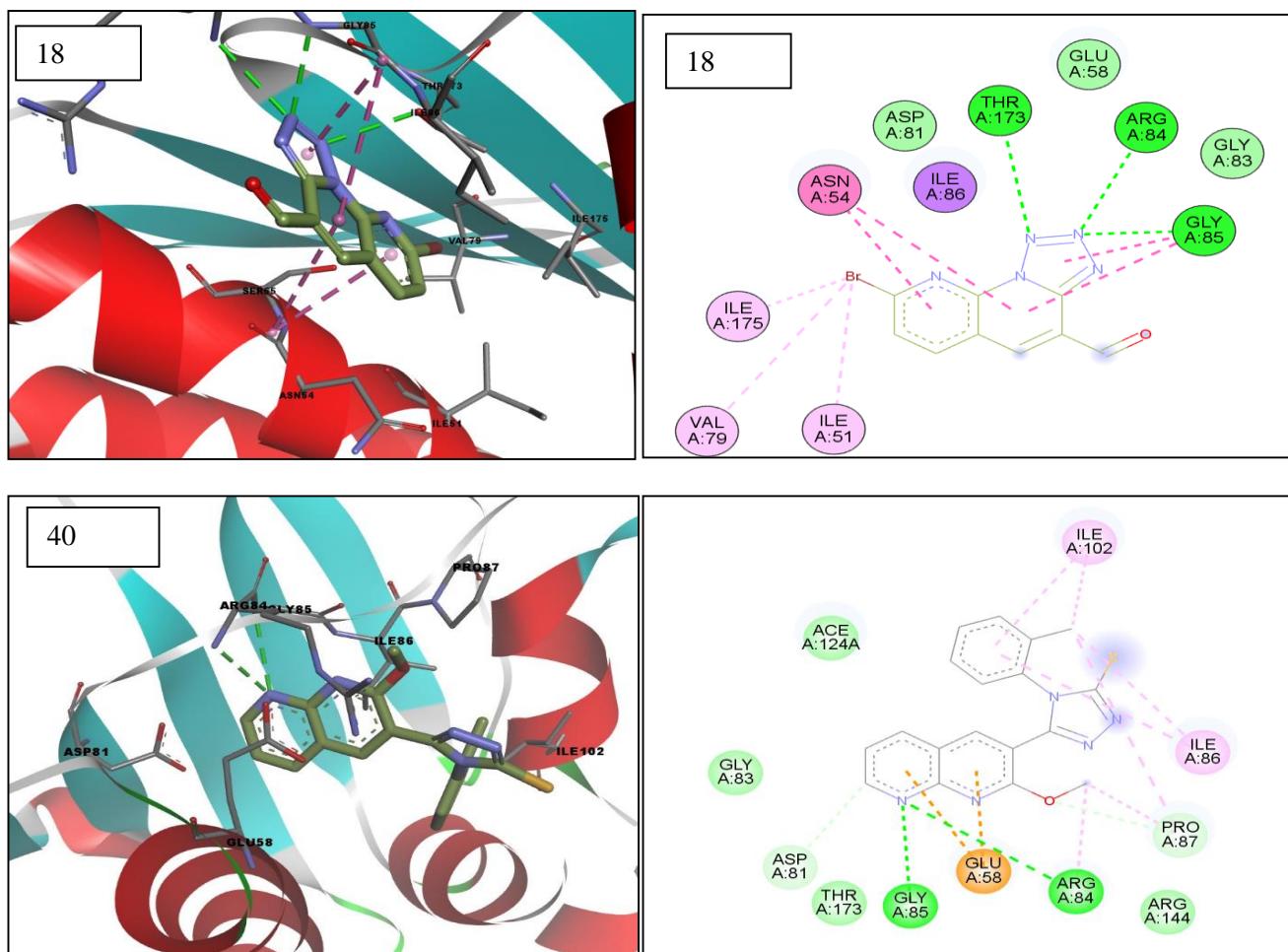



Figure 3: The graph showing the effect of the synthesized compounds with various substituents (29-53) on six types of bacteria

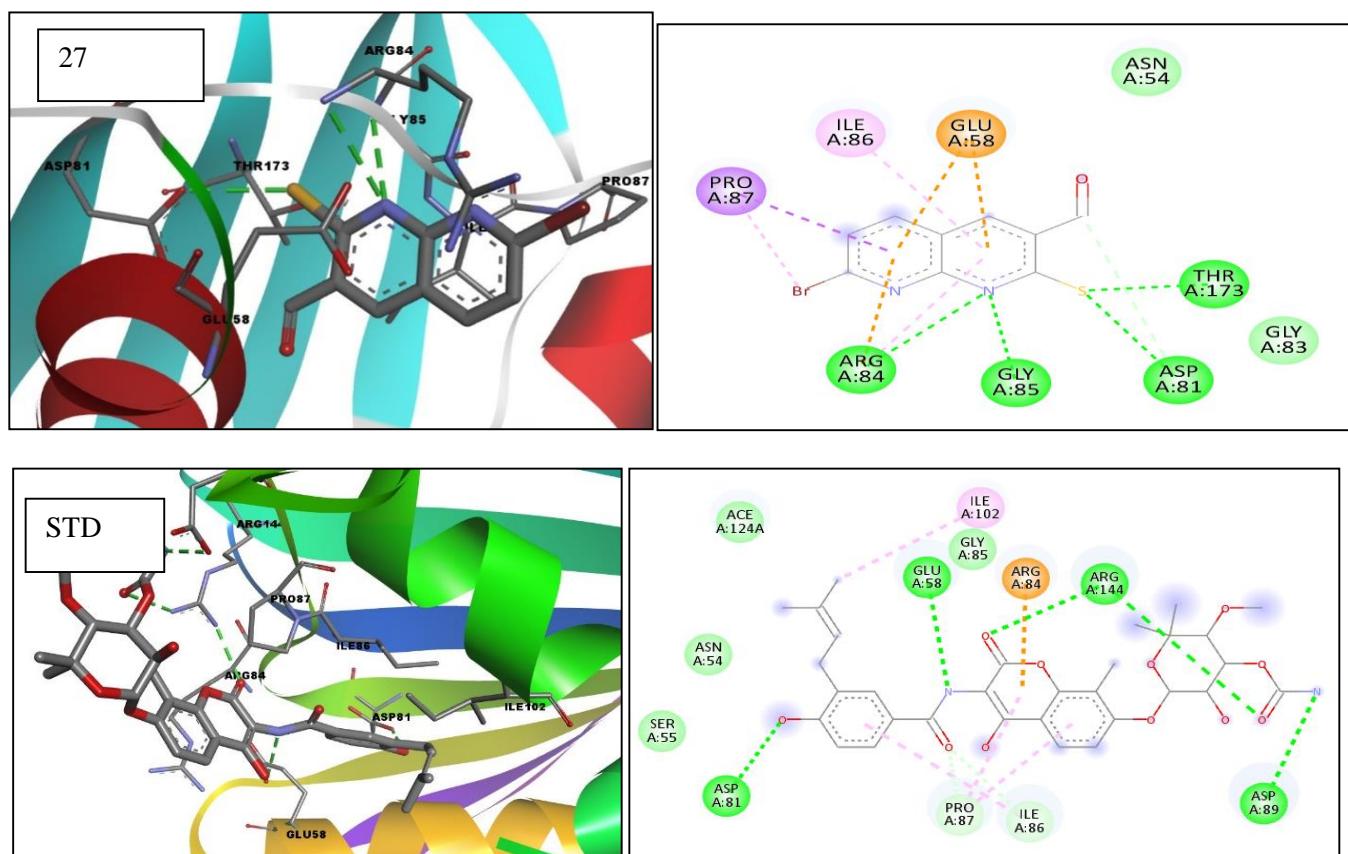


Figure 4: Docking pose of the compounds

Table 3
Docking score of the compounds

Compound No.	MW	Dock Score
18	278.1	-6.938
53	349.4	-6.685
40	349.4	-5.726
27	269.1	-7.749
9	285.5	-6.675
Std	612.6	-7.773

Peptidoglycan, a mesh-like polymer, shields microorganisms from antibacterial agents like antibiotics, toxins, chemicals and degradative enzymes. The compounds were redocked into the active site without a reference inhibitor, successfully forming complexes with the enzyme's active sites. Initially, poses with the lowest docking scores were chosen. These were then filtered based on the lowest binding affinity, determined by the smallest root mean square deviation (RMSD) against the reference drugs (Table 1). Compound 27 demonstrated the highest binding affinity to DNA gyrase (-7.74 kcal/mol) among the compounds, as detailed in table 1. Its superior antimicrobial activity may be attributed to robust interactions with the binding site, forming H-bonds with crucial amino acids (Arg84, Gly85, Asp89, Thr164 and Asp81) as shown in fig. 1-4 (Table 1).

Compound 18 exhibited a binding energy of -6.93 kcal/mol, interacting with the binding pocket through H-bonds with

Arg84, Gly85 and Thr173 (Fig. 2). The diverse interaction modes of ligands with the gyrase binding site's hydrophilic amino acid backbone (Fig. 1) suggest the importance of hydrophilic fragments (Asp and Asn) in the synthesized compounds for binding to DNA gyrase.

Conclusion

In conclusion, it is proved that the compounds 15, 17, 25, 26, 49 and 50 showed good biological activity against six different strains of bacteria. The inhibitory efficiency against bacterial growth is attributed to attacking the naked peptide glycan in the cell wall, implying that these compounds possess significant biological functions.

References

1. Ahmadi F., Rezayan Ghayahbashi M., Sharifzadeh M., Alipoor E., Nasser Ostad S., Vosooghi M. and Amini M., Synthesis and

evaluation of anti-inflammatory and analgesic activities of new 1, 2, 4-triazole derivatives, *Medicinal Chemistry*, **11(1)**, 69-76 (2015)

2. Bektas H., Karaali N., Sahin D., Demirbas A., Karaoglu S. and Demirbas N., Synthesis and antimicrobial activities of some new 1, 2, 4-triazole derivatives, *Molecules*, **15(4)**, 2427-2438 (2010)

3. Braccio Di., Grossi M., Alfei G., Ballabeni S., Tognolini M., Flammini L. and Barocelli E., 1,8-Naphthyridines IX. Potent anti-inflammatory and/or analgesic activity of a new group of substituted 5-amino [1, 2, 4] triazolo [4, 3-a][1, 8] naphthyridine-6-carboxamides, of some their Mannich base derivatives and of one novel substituted 5-amino-10-oxo-10H-pyrimido [1, 2-a][1, 8] naphthyridine-6-carboxamide derivative, *European Journal of Medicinal Chemistry*, **86**, 394-405 (2014)

4. Cao X., Wang W., Wang S. and Bao L., Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action, *European Journal of Medicinal Chemistry*, **139**, 718-725 (2017)

5. Chou J.Y., Lai S., Pan S.L., Jow G.M., Chern J.W. and Guh J.H., Investigation of anticancer mechanism of thiadiazole-based compound in human non-small cell lung cancer A549 cells, *Biochemical Pharmacology*, **66(1)**, 115-124 (2003)

6. El-Hadidy S.A. and Selim Y.A., New synthetic approaches for cytotoxic activity of novel 1, 8-Naphthyridine derivatives, *Journal of Heterocyclic Chemistry*, **55(1)**, 103-114 (2018)

7. Fadda A., El-Defrawy A.M. and El-Hadidy S.A., Synthesis, cytotoxicity evaluation, DFT molecular modeling studies and quantitative structure activity relationship of novel 1, 8-naphthyridines, *Am J Org Chem*, **2(4)**, 87-96 (2012)

8. Farag A.M., Mayhoub A.S., Barakat S.E. and Bayomi A.H., Regioselective synthesis and antitumor screening of some novel N-phenylpyrazole derivatives, *Bioorganic & Medicinal Chemistry*, **16(2)**, 881-889 (2008)

9. Kren V. and Rezanka T., Sweet antibiotics—the role of glycosidic residues in antibiotic and antitumor activity and their randomization, *FEMS Microbiology Reviews*, **32(5)**, 858-889 (2008)

10. Kumar Sanjeev and Adholeya Alok, Analysis of express sequence tags from Arbuscular Mycorrhizal fungi (AMF) express during the pre-symbiotic stage of the fungus, *Res. J. Biotech.*, **18(11)**, 89-95 (2023)

11. Laxminarayana E., Karunakar T., Shankar S.S. and Chary M.T., A Study on Antibacterial Activity of Substituted 1, 8-Naphthyridines Containing Carbaldehydes, Methylene Hydrazines, Thiadiazol Amines and Triazole Thiols, *Journal of Advances in Drug Research*, **2(2)**, 6-11 (2012)

12. Li J., Ren G.Y., Zhang Y., Yang M.Y. and Ma H.X., Two Cu (II) complexes of 1, 2, 4-triazole fungicides with enhanced antifungal activities, *Polyhedron*, **157**, 163-169 (2019)

13. Lu J., Patel S., Sharma N., Soisson S.M., Kishii R., Takei M. and Singh S.B., Structures of kibdelomycin bound to *Staphylococcus aureus* GyrB and ParE showed a novel U-shaped binding mode, *ACS Chemical Biology*, **9(9)**, 2023-2031 (2014)

14. Massari S., Daelemans D., Barreca M.L., Knezevich A., Sabatini S., Cecchetti V. and Tabarrini O.A., 1, 8-naphthyridone derivative targets the HIV-1 Tat-mediated transcription and potently inhibits the HIV-1 replication, *Journal of Medicinal Chemistry*, **53(2)**, 641-648 (2010)

15. Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. and Olson A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, *Journal of Computational Chemistry*, **19(14)**, 1639-1662 (1998)

16. Olepu S., Suryadevara P.K., Rivas K., Yokoyama K., Verlinde C.L., Chakrabarti D. and Gelb M.H., 2-Oxo-tetrahydro-1, 8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials, *Bioorganic & Medicinal Chemistry Letters*, **18(2)**, 494-497 (2008)

17. Panda D., Synthesis of Some Novel Thiazolidin-4-One Substituted 1, 2, 4-Triazoles and their Antimicrobial Activity Studies, Doctoral dissertation, Rajiv Gandhi University of Health Sciences, India (2006)

18. Roma G., Grossi G., Braccio M., Piras D., Ballabeni V., Tognolini M. and Barocelli E., 1 8-Naphthyridines VII. New substituted 5-amino [1, 2, 4] triazolo [4, 3-a][1, 8] naphthyridine-6-carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastroesophageal reflux disease, *European Journal of Medicinal Chemistry*, **43(8)**, 1665-1680 (2008)

19. Rzeski W., Matysiak J. and Kandefer-Szerszeń M., Anticancer, neuroprotective activities and computational studies of 2-amino-1, 3, 4-thiadiazole based compound, *Bioorganic & Medicinal Chemistry*, **15(9)**, 3201-3207 (2007)

20. Sharma P., Gupta G.D. and Asati V., Design, synthesis and antidiabetic study of triazole clubbed indole derivatives as α -glucosidase inhibitors, *Bioorganic Chemistry*, **139**, 106750 (2023)

21. Slaihim M.M., Al-Suede F.S.R., Khairuddean M., Ahamed M.B.K. and Majid A.M.S.A., Synthesis, characterization of new derivatives with mono ring system of 1, 2, 4-triazole scaffold and their anticancer activities, *Journal of Molecular Structure*, **1196**, 78-87 (2019)

22. Tsuzuki Y., Tomita K., Shibamori K.I., Sato Y., Kashimoto S. and Chiba K., Synthesis and structure-activity relationships of novel 7-substituted 1, 4-dihydro-4-oxo-1-(2-thiazolyl)-1, 8-naphthyridine-3-carboxylic acids as antitumor agents, Part 2, *Journal of Medicinal Chemistry*, **47(8)**, 2097-2109 (2004)

23. Yurtaş L. and Cantırk Z., The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against *Candida* species, *European Journal of Medicinal Chemistry*, **144**, 255-261 (2018).

(Received 02nd April 2024, accepted 03rd June 2024)